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Abstract

This paper explores the impact of the individual components of a coastal ocean

observing system on estimates of the circulation derived from a state-of-the-

art analysis and forecast system for the Mid-Atlantic Bight and Gulf of Maine.

The foundation of these activities is the Regional Ocean Modeling System 4-

dimensional variational (4D-Var) data assimilation platform, which is run in

support of the Mid-Atlantic Regional Association Coastal Ocean Observing Sys-

tem as part of the U.S. Integrated Ocean Observing System. The specific focus

of this study is on the impact of remote sensing observations from both space-

and land-based platforms on estimates of cross-shelf transport in the vicinity

of the National Science Foundation Ocean Observatories Initiative Pioneer ar-

ray. Sea surface temperature (SST) and sea surface height (SSH) were found

to have, on average, a similar impact on the transport estimates. However,

during a typical 3-day 4D-Var assimilation cycle, approximately two orders of

magnitude more observations of SST than SSH are used in the model, and

closer analysis shows that each altimeter measurement has approximately 50

times more impact on the transport estimates than an individual SST obser-

vation. This highlights the value of altimetry data for ocean state estimation,
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and the significance of expanding the altimeter constellation. The observations

that are most impactful of all are in situ measurements of temperature and

salinity, which have typically 3-4 times more impact than an individual SSH

datum. A robust geographical distribution of the observation impacts emerges

across a range of transport metrics which results from the combined influence

of space-time dynamical interpolation and error covariance information within

the 4D-Var system. The observation impact calculations suggest that High

Frequency (HF) radar estimates of surface currents have relatively little direct

influence on cross-shelf transport estimates. However, quantification of the sen-

sitivity of these same estimates to changes in the observing system indicate that

HF radar observations indirectly provide important information. This is under-

stood in the current system by appealing to the idea of borrowing strength from

the field of statistics in which some observations (satellite remote sensing in the

case considered here) can borrow strength from other, seemingly less important

observations.

Keywords: 4D-Var, observation impact, Mid Atlantic Bight

1. Introduction

Remote sensing observations from earth orbiting satellites are an essential

and critical component of any ocean observing system, and are routinely as-

similated in ocean models to constrain analyses and forecasts of the circulation.

Even in a simple objective analysis system of the ocean state at a single time,

quantifying the influence of any observing platform on the resulting circulation

estimate can be challenging (e.g., Daley (1991) discusses various aspects of the

interplay between observations in analyses). In a complex 4-Dimensional Vari-

ational (4D-Var) data assimilation system, unraveling the impact of individual

observations collected through time can present a significant challenge because

of the space-time dynamic interpolation embodied in the tangent linear and

adjoint models, resulting in observation impacts that can be quite remote from

the target region of interest.
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The focus of this study will be on the impact of remotely sensed observa-

tions of sea surface temperature (SST), sea surface height (SSH) and surface

currents in a near real-time analysis and forecast system of the Mid-Atlantic

Bight (MAB) and the Gulf of Maine (see Fig. 1). The system is based on the

Regional Ocean Modeling System (ROMS) and is run in support of the Mid-

Atlantic Regional Association Coastal Ocean Observing System (MARACOOS)

which forms part of the U.S. Integrated Ocean Observing System (IOOS). In

addition to remote sensing observations, in situ observations from a variety of

platforms are also assimilated into the model. However, the impact of in situ

observations on the circulation estimates will be the subject of two companion

studies.

The paper is organized as follows. The methodology used to compute the

observation impacts is described in section 2, and the configurations of the

Regional Ocean Modeling System (ROMS) and of the 4D-Var data assimilation

system used here are summarized in sections 3 and 4 respectively. The method

used to quantify the impact of observations on the 4D-Var analyses is predicated

on the choice of specific indices or metrics that target particular aspects of the

ocean circulation of interest. Section 5 introduces the metrics used in the present

study, which are motivated by the ability of the observing system to shed light

on cross-shelf transport processes. A quantitative assessment of the impact of

the different components of the observing system on 4D-Var estimates of the

cross-shelf transport is presented in section 6. Section 7 illustrates the role

played by the various components of the data assimilation system in controlling

the transfer of observational information throughout the estimation process.

The synergy between observations from different platforms is demonstrated in

section 8 by quantifying the sensitivity of the chosen metrics to changes in the

observing system. A summary and some conclusions follows in section 9.
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2. Observation Impacts and 4D-Var

The model used in this study is ROMS and the associated 4D-Var data as-

similation platforms. The methodology used in ROMS to compute the impact

of the observations on 4D-Var ocean circulation estimates is based on that em-

ployed routinely in numerical weather prediction and developed originally by

Langland and Baker (2004, hereafter LB). The implementation in ROMS is de-

scribed in detail by Moore et al. (2011c,a, 2017) so only a brief overview of the

approach will be presented here.

Following the usual notation (Ide et al., 1997), the ROMS state-vector will

be denoted by x. If xb denotes the background (or first-guess) then the analysis

xa resulting from data assimilation can be expressed as:

xa = xb + K(yo −H(xb)) (1)

where yo denotes the vector of observations, H is the observation operator that

maps from state-space to observation-space, and K is the Kálmán gain matrix.

In the case of 4D-Var, the observation operator H includes the nonlinear model.

The Kálmán gain matrix can be expressed in either the primal or dual form.

Here we focus on the dual form since this is the flavor of 4D-Var that was used in

the calculations described here. Thus, K = BHT (HBHT + R)−1 where B and

R are the background error and observation error covariance matrices respec-

tively, and H represents the tangent linearization of the observation operator

H. In 4D-Var H includes the tangent linearization of the nonlinear model and

HT includes the adjoint model.

Following the usual procedure (Talagrand and Courtier, 1987), the analy-

sis xa is identified by minimizing a cost-function expressed in the incremental

form (Courtier et al., 1994). In ROMS, the cost function is minimized using

the Lanczos formulation of the Restricted B-Preconditioned Conjugate Gra-

dient (RPCG) method (Gratton and Tshimanga, 2009) following Gürol et al.

(2014). This is equivalent to a truncated Gauss-Newton method (Lawless et al.,

2005) in which a sequence of linear minimization problems are solved itera-
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tively (so-called inner-loops) where each sequence is linearized about an up-

dated estimate of the circulation (so-called outer-loops). With this approach,

the dual Kálmán gain matrix for each outer-loop can be factorized according

to K̃m = BHTVmT−1
m VT

mHBHTR−1, where m is the number of inner-loops

and each of the m-columns of Vm represent the conjugate gradient descent di-

rections normalized to unit amplitude (the so-called Lanczos vectors), and Tm

is a known tridiagonal matrix. In this form, K̃m represents a reduced-rank

approximation of K.

Following LB, the observation impacts are quantified in terms of their in-

fluence on a chosen scalar metric, I(x). In particular, ∆I = I(xa) − I(xb)

represents the change in I due to assimilating the observations yo. As shown

by LB, to first-order ∆I ' (yo − H(xb))TKT (∂I/∂x)|xb . The reduced-rank

approximation K̃m for K then leads to:

∆I ' (yo −H(xb))TR−1HBHTVmT−1
m VT

mHB(∂I/∂x)|xb (2)

where (∂I/∂x)|xb represents the derivative of I with respect to x evaluated using

the background xb. Equation (2) shows that ∆I can be expressed as the dot-

product of two vectors, the innovation vector d = (yo −H(xb)) and the vector

g = R−1HBHTVmT−1
m VT

mHB(∂I/∂x)|xb which quantifies the impact of the

observations on ∆I. Since each element of d is uniquely associated with an

observation, so then are the corresponding elements of g such that the product

digi represents the contribution (aka impact) of the ith-observation on ∆I. The

observation impacts for a particular data assimilation cycle can, therefore, be

easily computed from the archived 4D-Var Lanczos vectors (see also Trémolet,

2008).

3. ROMS Configuration

The configuration of ROMS used here is based on the MARACOOS grid

shown in Fig. 1, and encompasses the MAB and the Gulf of Maine. The grid

is primarily used to study the MAB circulation and cross-frontal exchange pro-
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cesses between the continental shelf and the deep ocean. The model configura-

tion is described in detail by Wilkin et al. (2018) and Levin et al. (2018) so only

a brief description will be given here.

Figure 1: The ROMS model domain showing a 4D-Var sea surface salinity analysis on 16 May

2014. The black contour shows the 34.5 isohaline, and the thick black line denotes the location

of target section of the 200 m isobath used to define the various transport metrics introduced

in section 5. The red box indicates the position and the nominal extent of the OOI Pioneer

glider observing array in relation to the target section. The cyan line is the 100 m isobath

which can be used to delineate the Mid-Atlantic Bight and the Gulf of Maine as referred to

in the main text.

The horizontal resolution is∼ 7 km and there are 40 vertical terrain-following

levels stretched so that the thickness of the surface-most layer ranges from

0.1 − 1.8 m and the bottom-most layer from 0.1 − 3.4 m over the continental

shelf to resolve boundary layer processes. Open boundary conditions use data

from the Mercator-Océan global analysis (Drévillon et al., 2008) with tempera-

ture and salinity adjusted to remove seasonal bias compared to a local regional

climatology Fleming (2016). The open boundary Mean Dynamic Topography
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(MDT) and seasonal cycle of SSH variation were also adjusted for bias using a

regional data assimilative climatological seasonal analysis computed following

the procedure described by Levin et al. (2018) and Wilkin et al. (2018). The

sub-tidal mesoscale variability captured by Mercator-Océan is retained. Har-

monic tidal forcing (Mukai et al., 2002) was added to the boundary SSH and

depth-averaged velocity data; in a domain this small the astronomical tide gen-

erating potential is negligible. Sea surface wind stress, and heat and freshwater

fluxes were derived from 3-hourly National Centers for Environmental Predic-

tion (NCEP) North American Mesoscale (NAM) forecast marine boundary layer

conditions and standard bulk formulae Fairall et al. (2003). NAM air pressure

is also imposed as a surface condition to the pressure gradient force so that

the model computes a dynamic Inverted Barometer (IB) response. Accordingly,

we add an equilibrium IB sea level term to the open boundary sea level data

consistent with standard practice in altimeter data processing. Daily river in-

flows were imposed at 22 discharge sites based on U.S. Geological Survey and

Water Survey of Canada observations and a statistical model that adjusts for

ungauged portions of the watershed Wilkin et al. (2018).

4. ROMS 4D-Var

A full description of the 4D-Var configuration used here can be found in Levin

et al. (2018) and Wilkin et al. (2018) so only a summary of the critical features

will be presented here. The data assimilation approach employed is the dual

formulation of the ROMS 4D-Var system (Moore et al., 2011c; Gürol et al., 2014)

which was run using two outer-loops and seven inner-loops, a configuration that

was adopted after extensive experimentation. Data were assimilated into the

model using non-overlapping 3-day assimilation windows. The 4D-Var analysis

xa at the end of each 3-day assimilation window was used as the background

xb for the next assimilation cycle.
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4.1. Observations

A summary of the data assimilated and the source of each data type that

were available during the period Jan 2014 - Dec 2017 is given in Table 1. Fig-

ure 2a shows a time series of the total number of observations assimilated into

the model during each 4D-Var cycle and indicates that ∼ 105 observations are

typically available during a 3-day window. There are generally fewer obser-

vations available during the winter due to a drop in the number of infra-red

SST observations associated with increased cloudiness at this time of the year.

A break down of the number of observations by type is shown in Fig. 2b and

indicates that the lion‘s share of available data is in the form of satellite SST

observations.

Type & platform Source Sampling rate Super-obs Obs error

and resolution averaging1

AVHRR IR SST MARACOOS.org & 4 passes per day, 3 hr σb

NOAA Coastwatch 1 km

GOES IR SST NOAA Coastwatch hourly, 6 km 3 hr 2σb

AMSR2, TRMM, and NASA JPL daily, 15 km 1.25σb

WindSat microwave SST PODAAC

SSH: Jason, AltiKa, RADS, TU Delft ∼ 1 pass daily, 0.04 m

CryoSat ∼ 4 km

in situ T, S: NDBC buoys, Met Office En4.2 standard 0.25σbσo/σmax
3

Argo floats, XBT, variable2 levels2

surface drifters

Surface currents: MARACOOS.org hourly, 1 km 1 hr, 24 km 0.5σb

CODAR HF-radar

Glider T, S: IOOS Glider DAC variable2 standard 0.25σbσ/σmax
3

MARACOOS levels2

In situ T,S: GoM5 NERACOOS.org4 hourly, 1 hr σb

buoys 10 buoys

In situ u,v: GoM5 NERACOOS.org4 hourly, 1 hr 0.5σb

buoys 9 buoys1

Table 1: A summary of the observational data assimilated into ROMS during 2014-2017,

the procedure for forming super observations, and the observation errors assigned to each

observation type. 1: All data that were sampled at a horizontal resolution higher than that

of the model were formed into super observations at the resolution of the ROMS grid unless

otherwise indicated. 2: Profile data were binned in the vertical using the WOD atlas standard

depths (Boyer et al., 2009). 3: Here σ is the standard deviation of all observations that fall

within a vertical bin (see comment 1) and σmax is the maximum value of all σ in a vertical

profile. 4: NERACOOS = North East Regional Association Coastal Ocean Observing System.

5: GoM=Gulf of Maine.
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Figure 2: (a) A time series of log10 of the total number of observations assimilated into the

model during each 3-day 4D-Var cycle. (b) Same as (a) but for the number observations of

each type: SST - black; SSH - blue; in situ temperature - red; in situ salinity - green; in situ

velocity - red dashed; gridded HF radar - black dashed; rejected obs - cyan.

It is standard procedure to thin the observations by combining multiple mea-

surements of the same type that fall within a single grid cell, and that are closely

spaced in time, into super observations. As noted in Table 1, all available SST

observations were combined into 3-hourly fields and then, depending on the res-

olution of the dataset, either first formed into super observations or projected

directly onto the model grid. Microwave and geostationary SST observations

were used only in those grid cells that did not have polar orbiter infrared mea-

surements. Altimetry observations were averaged if the tracks overlapped in

space and time (within 7 km over a 2-hour interval).

Proximity analysis was performed on all observations to remove outliers.

Quality control was also performed during each 4D-Var cycle following Järvinen

and Undén (1997) as described by Moore et al. (2013). During this procedure,

the innovation di associated with each observation is compared to the standard

error based on the assumed standard deviations of the background (σb) and

observation (σo) errors. Specifically, if d2i > α2(σ2
b +σ2

o) then the observation is

rejected and not included in the analysis. The threshold parameter α depends
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on the observation type and is given in Table 2 for the analyses considered here.

A time series of the total number of observations rejected during each 3-day

4D-Var cycle is shown in Fig. 2 and is typically O(103) indicating that only

∼ 1% of the total number of observations were rejected based on the criteria

chosen.

The forward model computes the ocean‘s IB response and generates storm

surge and coastal trapped waves within the domain, so we do not apply the

Dynamic Atmosphere Correction (DAC) to altimeter SLA because that would

introduce an inconsistency between observed and modeled SSH. The model also

simulates the full tidal signal, but out of concern that small phase errors in the

barotropic tide might dominate model-data sea level misfit we elect to de-tide

the observations using the GOT4.10 correction of Ray (2013) and replace the

tidal variability in the observations with a signal computed from a harmonic

tidal analysis of a long free run of the MARACOOS model (see Wilkin et al.,

2018). The same MDT described in section 3 applied to open boundary data is

added to the augmented altimeter SLA to produce data for assimilation that has

the best possible consistency between modeled and observed sea level signals.

Mesoscale sea level variability is correlated on time scales of a few to several

days, but we presently lack an algorithm to formally impose this in the ROMS

4D-Var observation operator. Therefore, to encourage geostrophic adjustment

of the dynamical fields and penalize the generation of barotropic surface gravity

waves, we adopt the approach introduced by Zavala-Garay et al. (2014) whereby

we assimilate each altimeter observation three times within a 2-hour time win-

dow: at the actual time of observation, and 1 hour before and 1 hour after. For

these pseudo-observations the appropriate phase of the MARACOOS harmonic

tide is added to the de-tided satellite value. We are unable to make a similar

accommodation of the dynamic atmosphere effect so we inflate the observation

error of the 1-hour lagged data to compensate.
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4.2. Covariances

As described in Moore et al. (2011c), the 4D-Var background error covari-

ance matrix B was modeled following the diffusion operator approach of Weaver

and Courtier (2001). The decorrelation length scales assumed in B for errors in

each state variable are listed in Table 2. Horizontal scales were estimated using

a semi-variogram analysis (Banerjee et al., 2004) of the free-running model. In

principle the horizontal and vertical decorrelation scales should be different as

appropriate for each state variable, and also allowed to vary spatially and sea-

sonally to reflect month-to-month changes in the circulation. Although larger

vertical decorrelation scales help propagate information about the mesoscale

from surface observations down through the water column, an overestimate of

the vertical decorrelation scale in areas characterized by strong stratification can

often drive spurious vertical oscillations. These oscillations are especially pro-

nounced in the Gulf of Maine during summer months, eroding the stratification

and pushing bottom temperature and salinity toward unrealistic values. Reli-

ably estimating variations in covariance properties is very challenging (Moore

et al., 2019), so as a compromise, we chose to use constant decorrelation scales

based on the shortest vertical decorrelation scale, 10 m, estimated over the

whole domain. While this may limit the influence of surface observations in

the open ocean, the integrity of the summer time circulation in the MAB and

GOM is preserved. Consequently, we are relying heavily on the tangent linear

and adjoint model to propagate error information vertically via the contribu-

tion of HBHT to the Kálmán gain. The standard deviations of the background

errors were estimated from the mesoscale variability in an 11-year free run of

the model.

The observation error covariance matrix R was assumed to be a diagonal

matrix. The standard deviations for the observation errors were estimated by

combining sensor error and representation error (from combining observations

into super-observations). In some cases the observation errors were scaled by

the background error standard deviation to make the model-data misfit reduc-

tion more uniform across different dynamic regimes. While these choices are
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somewhat ad hoc, they were adopted to meet immediate demands to establish

a real-time forecast instance of the 4D-Var system for MARACOOS. They work

adequately in practice but deserve further evaluation and refinement. The ob-

servation errors assigned to the various platforms, and any associated rescalings,

are summarized in Table 1.

State variable Horizontal decorrelation Background quality

scale (km) control parameter α

SSH 40 5

Velocity 40 3

Temperature 40 6

Salinity 15 6

Table 2: A summary of the decorrelation scales assumed for background errors in each state

variable. The vertical decorrelation length scale for all state variables was chosen to be 10 m.

The parameter α used for the background quality control rejection criteria is also indicated.

4.3. 4D-Var diagnostics

The performance of the 4D-Var system is described by Levin et al. (2018)

and Wilkin et al. (2018), so only a summary is presented here.

Figure 3 shows probability density functions (pdfs) for the innovations d =

(yo − H(xb)) associated with observations of SST, SSH, in situ temperature

and in situ salinity from the 1st outer-loop of all 4D-Var cycles. If B and R

are correctly prescribed, the innovations d should be normally distributed with

a covariance given by (HBHT + R). Therefore, for reference, Fig. 3 also shows

the pdfs for normal distributions with the same mean and standard deviation

as the innovations computed during the 1st outer-loop. A comparison of the

normal distribution curves with the innovation pdfs in Fig. 3 indicates that, for

all observation types, the innovation pdfs depart significantly from the expected

normal distributions, and are more reminiscent of Laplace distributions. For the

most part, the mean innovations for SST, in situ temperature and in situ salinity
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Figure 3: Probability density functions (pdfs) of the 4D-Var increments in (a) SST, (b) SSH,

(c) in situ temperature, and (d) in situ salinity computed from all 4D-Var cycles spanning

the 2014-2017 period.

are close to zero. The mean SSH innovation, however, is negative indicating

that, on average, the mean model SSH exceeds that observed. During the 2nd

outer-loop, the innovation pdfs are qualitatively similar to those for the 1st

outer-loop (not shown).

A very simple measure of the performance of the 4D-Var system can be ob-

tained by inspecting the contribution of the observations Jo = (yo−ym)TR−1(yo−

ym) to total the 4D-Var cost function, where ym denotes the model circulation

estimate evaluated at the observation points. Figure 4 shows the time series

of the ratio of the final to initial values of Jo at the end of each outer-loop

associated with SSH and temperature observations. During both outer-loops,

the average fit of the model to the observations is improved by the 4D-Var

procedure.
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Figure 4: Time series of the ratio of final to initial values of Jo for the 1st outer-loop (blue)

and the 2nd outer-loop (red) for the contributions from observations of (a) SSH and (b) SST.

5. Circulation Metrics

An important circulation feature of the northeast shelf is the MAB shelf-

break front (Linder and Gawarkiewicz, 1998), which separates the warm, saline

water of the Gulf Stream from the cooler, fresher waters of the continental slope.

The exchange of water masses across the continental shelf-break is of consider-

able interest and is influenced by a range of different processes (Gawarkiewicz

et al., 2018). One such process is illustrated in Fig. 1 and is associated with

the intrusion of Gulf Stream rings onto the continental shelf as captured by the

4D-Var analysis on 16 May 2014. This event was studied in detail by Zhang

and Gawarkiewicz (2015) and takes the form of a streamer of high salinity water

associated with a warm core eddy impinging on the shelf. A series of metrics,

I, are considered here to quantify the impact of the observations on the ability

of the model 4D-Var analyses to capture these kinds of events. Specifically, the

metrics chosen evaluate the magnitude of the cross-shelf exchange fluxes in the
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vicinity of the OOI Pioneer Array (cf Fig. 1). This region was chosen because

it has been the subject of other studies reported in the literature (e.g. Garvine

et al., 1989; Linder and Gawarkiewicz, 1998; Chen and He, 2010), and also be-

cause we wish to quantify the relative impact of remotely sensed observations

and in situ observations from the densely sampled Pioneer array. The impact

of the in situ observing systems will be explored in a companion study and not

reported on in detail here.

The following metrics were used to quantify the impact of the observations

on the 4D-Var estimates of cross-shelf exchange at the shelf-break in the vicinity

of the OOI Pioneer array:

Iu =

∫
s

∫ 0

−h

(un − ũn)dzds (3)

IuT = (ρ0cpA)−1

∫
s

∫ 0

−h

(un − ũn)(T − T̃ )dzds (4)

IuS = (103ρ0A)−1

∫
s

∫ 0

−h

(un − ũn)(S − S̃)dzds. (5)

In each case,
∫
s
. . . ds represents an integral along a vertical section following a

segment of the h = 200 m isobath, which is nominally identified as the location of

the continental shelf-break, and A is the total cross-sectional area. The location

of this vertical section is indicated in Fig. 1 and cuts through the middle of the

region sampled by the Pioneer glider array. In (3) - (5), un corresponds to the

component of the velocity that is locally normal to the section; ũn, T̃ and S̃

represent the mean seasonal cycle; and an over-bar denotes the time average

over the duration of the data assimilation window. Therefore, Iu, IuT and IuS

represent measures of the 4D-Var cycle average total volume transport, heat

transport and salt transport respectively crossing the shelf-break.

Figures 5a-c show time series of each metric computed from the background

circulation estimates. Also shown are time series of each metric calculated from

a free run of the model without data assimilation. The cross-shelf volume trans-

port Iu (Fig. 5a) varies in the range ∼ ±7 Sv during the 4D-Var analyses and

∼ ±5 Sv during the free run. Some features of the transport variability are

similar in both cases, suggesting that they are associated mainly with surface
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Figure 5: Time series of the circulation metrics computed from the 4D-Var analyses (red) and

from a free running without data assimilation (blue) for (a) Iu, (b) IuT and (c) IuS . Also

shown are time series of the circulation metric increments at the end of the 1st outer-loop

(blue) and the 2nd outer-loop (red) for (d) ∆Iu, (e) ∆IuT and (f) ∆IuS .

forcing, although in general the two-time series are quite different (r = 0.3). The

variability in cross-shelf heat transport IuT (Fig. 5b) and cross-shelf salt trans-

port IuS (Fig. 5c) is very different in the 4D-Var analyses and the free run. Even

though Iu is generally in the same direction in both cases, IuT is often in the

opposite direction in the analysis and free run, which is due to the temperature

anomalies in the two cases being of opposite sign (not shown). Similarly for the

time series of IuS . Clearly then, data assimilation yields significant corrections

to the cross-shelf exchange of water masses.

The impact of the observations on each metric was quantified according to

(2) which represents a first-order linearization of the increment in each metric

arising from data assimilation during each cycle. Equation (2) shows that an im-
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portant ingredient of these calculations is (∂I/∂x)|xb . Since (4) and (5) present

nonlinear metrics, computation of this first derivative represents an additional

linear approximation in the procedure.

Since two outer-loops are employed in the 4D-Var analyses, it is necessary

to compute the observation impacts separately for each outer-loop. If xa
1 de-

notes the 4D-Var analysis at the end of the 1st outer-loop, then the observation

impacts would be quantified according to ∆I1 ' (yo −H(xb))T K̃T
1 (∂I/∂x)|xb

and ∆I2 ' (yo − H(xa
1))T K̃T

2 (∂I/∂x)|xa1 . Here, ∆I1 and ∆I2 represent the

increments in the metric I at the end of the 1st and 2nd outer-loop respectively,

K̃1 and K̃2 are the reduced-rank Kálmán gain matrices for each outer-loop,

and (∂I/∂x)|xb and (∂I/∂x)|xa1 represent the derivatives of the metric I eval-

uated using xb and xa
1 . However, xa

1 and K̃2 are no longer independent of

the observations, in which case the expression for ∆I2 does not provide an un-

ambiguous indicator of the impact of each datum during the 2nd outer-loop.

Trémolet (2008) discusses this issue in detail and notes that the observations

typically exert the most influence on the analysis during the 1st outer-loop, and

as such, their impacts during the 1st outer-loop are useful as an overall indicator

since almost always ∆I1 > ∆I2, which is the case here. This is illustrated in

Figs. 5d-f which shows time series of ∆I1 and ∆I2 associated with each metric

computed using the tangent linear approximation (2). The increments in each

index computed directly from the difference between the non-linear model tra-

jectories xa
1 and xb are almost indistinguishable from those using the tangent

linear assumption as evidenced by the high correlation coefficients (0.98 for ∆Iu

and 0.91 for ∆IuT and ∆IuS). Therefore, the tangent linear approximation,

on which the following analysis of the observation impacts is based, is reliable.

Figure 5d shows that 4D-Var makes relatively modest increments in cross-shelf

volume transport ∆Iu compared to the total value of Fig. 5a, a desirable feature,

since this indicates that the mass transport is not undergoing significant and/or

abrupt changes as a result of assimilating the observations. The increments in

cross-shelf heat and salt transport (Figs. 5e and 5f), however, are a much more

significant fraction of the total transports (Figs. 5b and 5c) indicative of correc-
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tions in the temperature and salinity through the water column as informed by

the observations.

6. Observation Impacts

Using (2), the increments ∆Iu, ∆IuT , and ∆IuS were decomposed into the

contributions of each component of the observing system. Figure 6 shows a

summary of the root mean square (RMS) impact, averaged over all assimilation

cycles for each circulation metric, of the various and different types of observing

platforms. While in situ temperature and salinity observations clearly exert the

most influence on each circulation metric, altimetry and SST also have signifi-

cant impact. Figure 6 also shows the RMS impact of each altimeter and SST

platform evaluated separately, and the repeated assimilation of SSH observa-

tions described in section 4.1 has been accounted for here and in all subsequent

figures. The RMS impacts across the different altimeter platforms are similar,

while for SST, it is observations from AVHRR and AMSR that have the most in-

fluence. This possibly reflects that they are quite complementary observations,

with infrared AVHRR having high resolution but incomplete spatial coverage

due to clouds, whereas microwave AMSR delivers data in all weather but at

reduced resolution and accuracy. The impacts for these platforms also scale

inversely with the observation errors that are assigned to each. In the case of

altimetry, the observation errors assumed for each platform are the same, while

for infrared SST, AVHRR errors are half those of GOES (see Table 1). Re-

motely sensed estimates of surface current derived from shore-based HF radars

have only modest impact on the three outer shelf transport metrics we have

chosen to consider here.

6.1. Impacts per datum

The RMS impact per datum on each transport metric of each observation

type averaged over all 4D-Var cycles is shown in Table 3. When viewed in this

way, the least impactful observations from a per datum perspective are SST ob-

servations. However, on aggregate, because there are so many SST observations
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Figure 6: Histograms of the RMS impact averaged over all 4D-Var cycles for observations

of different types (a-c) and individually for different remote sensing platforms (d-f) for the

increments in each of the metrics ∆Iu, ∆IuT and ∆IuS . The repeated assimilation of SSH

observations described in section 4.1 has been accounted for here and in all subsequent figures.

Sup SSH and Sup SST refer to super-observations for SSH and SST respectively.

(cf Fig. 2), SST observations contribute significantly to the cross-shelf transport

estimates (Fig. 6). Table 3 shows that a single altimeter observation is ∼ 50

times more impactful than a single SST observation, and this is generally true

across all altimetry platforms. The data that have the greatest impact are in

situ temperature and salinity observations which are ∼ 3−4 times more impact-

ful than individual altimeter measurements. Individual in situ measurements of

velocity and HF radar surface current estimates have a similar impact to SST.

6.2. Impact as an indicator of 4D-Var performance

As noted in section 2, 4D-Var is an iterative algorithm, and it is of interest

to quantify the relative impact of each observation type during the iteration

procedure since this provides a useful indicator of 4D-Var performance. To this

end, Fig. 7 shows the RMS impact on each transport metric of the different

observation types computed during each inner-loop for both outer-loops and

averaged over all 4D-Var cycles. The dominant impact of in situ temperature
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Iu (m3 s−1) IuT (W m−2) IuS (10−3 kg m−2 day−1)

SST 5 1.2 6

SSH (all) 250 54 310

Jason-2 240 54 280

Jason-3 320 63 380

AltiKa 240 50 310

Cryosat 240 54 300

in situ T 780 200 930

in situ S 1000 262 1230

in situ u,v 4 1.2 5

HF radar 2 0.6 3

Table 3: The RMS impact per datum of each observation type and altimeter platform on the

three transport metrics averaged over all 4D-Var cycles. The repeated assimilation of SSH

observations described in section 4.1 has been accounted for here.

and salinity observations is again very evident in each case, in keeping with

Fig. 6. Figure 7 shows, however, that on average SST and SSH observations

collectively have an almost equal average impact. As noted in section 5, the

average impact of a given observation type is typically larger during the 1st

outer-loop than during the 2nd outer-loop, in agreement with the arguments

put forth by Trémolet (2008).

An interesting feature of Fig. 7 is the rate at which the RMS impacts of

each observation type asymptote to a near constant value. In the case of in

situ hydrographic observations, the RMS impacts reach their near maximum

value after just three inner-loops, indicating that much of the useful informa-

tion has been extracted from these data early on in the assimilation procedure.

In contrast, the RMS impacts for SST and SSH continue to exhibit an upward

trend at the end of each outer-loop, suggesting that there is further useful in-

formation that could be extracted from these observations by 4D-Var. While

it is by no means obvious how the 4D-Var system should be tuned or reconfig-
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ured to capitalize on this additional information, it is a topic worthy of further

investigation.

Figure 7: The RMS impact of each data type during each inner-loop averaged over all as-

similation cycles for (a) ∆Iu, (b) ∆IuT and (c) ∆IuS . Iterations 1-7 correspond to the 1st

outer-loop, while iterations 8-14 correspond to the 2nd outer-loop.

6.3. Impact and bias

Another illuminating summary of the observation impacts for different ob-

servation types is in the form of scatter plots and 2-dimensional histograms

of the impact per observation versus the innovation. Examples are shown in

Fig. 8 for the cross-shelf volume transport increments ∆Iu for the 1st outer-

loop from all assimilation cycles. Grey dots are the innovation-impact pairs for

every observation, while the colors summarize the frequency of these pairs in

2-dimensional innovation-impact bins. Red dashed lines divide each plot into
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a contingency diagram and the number of points in each quadrant is noted in

italics.

Focusing of the colored 2-D histogram data, the plots in Fig. 8 generally take

the form of “butterfly wings“ with small innovations (for which the difference

between the background and the observation is small) having little impact on

∆Iu, but as the magnitude of the innovations increase the size of the impacts

also increase; reassuringly however, observations associated with very large in-

novations (large model-data differences) generally exert lesser impact on ∆Iu,

which is evident from the tapering of the “wings“. This is a desirable feature

of the data assimilation system because these are quite likely cases of obser-

vations that passed the quality control threshold through the coincidence of a

poor background solution at a bad observation location, and we would not want

these to adversely impact the analysis.

It is altimeter observations that have the greatest tendency to depart from

the butterfly-wing pattern with streaks of dots emanating from the plot origin

indicating high impact for modest innovation. However, these do not register

in the 2-D histograms indicating that they stem from a handful of points only.

We can report that upon deeper inspection we find that each streak is typically

associated with a single satellite pass, indicating either altimeter data with cor-

related errors along-track that pass quality control or, alternatively, short-lived

sea-level variability events that were wholly missed by the model yet captured

by satellite. We have not included similar plots for individual SST platforms,

but they are all qualitatively similar to Fig. 8b.

In the absence of bias, the four quadrants of a contingency diagram should

be approximately equally populated. This is generally the case for temperature,

salinity and velocity (Figs. 8b-e) but for SSH (Fig. 8a) there is a moderate pre-

ponderance of negative innovations, which is consistent with the pdf in Fig. 3b.

This bias occurs across all altimeters (Figs. 8f-i) which could indicate that ei-

ther or both of the Mean Sea Surface (MSS) to which SLA is referenced, or

the Mean Dynamic Topography (MDT) that is added to SLA, tend to be too

high. In shelf waters the MSS CNES CLS 15 product (Schaeffer et al., 2016)
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Figure 8: Scatter plots (dots) with superimposed 2-D histograms (color; log scale) of impact

on ∆Iu versus innovation for different observation types (a-e), and for each individual altimeter

satellite (f-i). Red dashed lines divide each plot into four quadrants of a contingency diagram,

with the number of points that populate each quadrant indicated.

is an extrapolation by optimal interpolation of multi-mission satellite altimeter

data derived using standard range and geodetic corrections that exclude shal-

low water observations. This introduces errors that we cannot easily quantify

but would not expect to be consistently biased. While our MDT is a significant

improvement over the AVISO standard product (Levin et al., 2018), if the mean

along-shelf current is still less than in reality this would be consistent with a

negative bias in innovations.

The results for each altimeter satellite (Figs. 8f-i) indicate that positive in-

novations typically have the largest impact on ∆Iu. We presently do not have

a hypothesis for what characteristic of the model, the data, or their respective

errors, might account for this. Positive innovations also have moderately larger
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impact for ∆IuT and ∆IuS metrics (not shown). Data assimilation has thus

highlighted potential issues with altimeter data bias deserving further analysis.

6.4. Spatial variations in impact

The geographic variations in the impact associated with each observation

type are a reflection of the dynamical processes that control the flow of infor-

mation through the data assimilation system. With this in mind, Fig. 9 shows

the geographic variability of the RMS impact (for all three transport metrics)

of SST and SSH observations that fall within each surface grid cell of the model

for the 1st outer-loop for all 4D-Var cycles. It is important to note that the

RMS impacts in Fig. 9 are plotted on a log-scale, and indicate that the average

impact on each metric within the Pioneer target region of observations from

different parts of the model domain can vary by 2-3 orders of magnitude. Fig-

ure 9 exhibits several remarkable features. First, it is evident that observations

both close to and remote from the target area can have a significant impact on

each transport metric in the case of both SST and SSH. Second, for a given

observation type, the geographic distribution of the regions of high and low im-

pacts display remarkable qualitative similarities across all three metrics. In the

case of SST (Figs. 9d-f), observations in the vicinity of the target section have

a significant impact as one might expect. However, observations further afield,

such as near the north wall of the Gulf Stream, have an equally significant im-

pact. The impact of observations that are remote from the target region are an

indication of the critical role played by ocean dynamics in propagating infor-

mation through the 4D-Var system. In the case of altimetry (Figs. 9a-c), SSH

observations in the vicinity of the target section have a relatively small impact

on each metric, and instead, it is observations that are remote from the target

area that exert the largest influence. In particular, observations from altimeter

passes over the Gulf Stream and some near-shore regions such as western Long

Island and the Gulf of Maine have the largest impact. In the case of ∆Iu, these

are the data that populate the wings of the scatter plots in Figs. 8f-i.

The RMS impacts associated with each altimeter and SST platform are
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Figure 9: The spatial distribution of log10 of the RMS impact of observations falling within

each model grid cell averaged over the all 4D-Var cycles (2014-2017) for altimeter observations

and for (a) ∆Iu , (b) ∆IuT and (c) ∆IuS . The RMS impact of satellite SST observations is

also shown for (d) ∆Iu , (e) ∆IuT and (f) ∆IuS . In each case the RMS is shown at the end

of the 1st outer-loop. The location of the 200 m isobath target section crossing the Pioneer

glider array (green box) is indicated.

similar to those of Fig. 9, and the patterns are robust from year-to-year (not

shown). The origin of these robust patterns will be explored next.

7. The Mechanics of Observation Impacts

7.1. An Illustrative Example

Before examining the nature of the geographic distributions of observation

impact discussed in section 6.4, it is instructive to pause and consider the un-

derlying mechanics of the calculations described by (2), since this can guide

our dynamical interpretation of the results. With this in mind, the circulation

metrics introduced in section 5 can be written generically in a discrete form as

either IL =
∑ie

i=is
hT
i xi or IQ =

∑ie
i=is

xT
i ET

i xi where xi = x(t) = x(i∆t) is

the state-vector at time t = i∆t with time step ∆t, and is and ie denote the
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start and end time steps of the integration, the assimilation window in the cases

considered in section 5. For the class of linear metrics IL and quadratic metrics

IQ, the elements of the vector hi and matrix Ei represent weights appropriate

for the metric. Specifically, Iu belongs to the class IL while IuT and IuS belong

to the class IQ. Regarding (2), the derivative of each metric with respect to x

can be expressed as:

∂IL/∂x '
ie∑

i=is

MT
i hi (6)

∂IQ/∂x '
ie∑

i=is

MT
i (Ei + ET

i )xi (7)

where MT
i is the adjoint model linearized about xi, in which case the increment

in each metric during the 1st outer-loop can be expressed as:

∆IL ' (yo −H(xb))T (HBHT + R)−1HB

ie∑
i=is

MT
i hi (8)

∆IQ ' (yo −H(xb))T (HBHT + R)−1HB

ie∑
i=is

MT
i (Ei + ET

i )xb
i . (9)

Similar expressions hold for outer-loop n if xb is replaced by xa
n−1.

Figure 10 shows a schematic illustration of the various matrix operations in

(8) and (9) for the case of an idealized steady zonal shear flow. The example

illustrated is for a metric I defined at a single instant in time along a target sec-

tion that is perpendicular to the jet axis (Fig. 10a). In this case, the derivative

∂I/∂x|xb represents a line of impulses at each grid point that contributes to I.

When multiplied by the adjoint propagator MT , Fig. 10b illustrates how each

impulse is integrated backwards in time and is thus advected upstream against

the shear flow. Part of the adjustment process will involve the generation of

waves which, in the adjoint model, will move in the opposite direction to their

counterparts in the tangent linear model. At this point, the adjoint model solu-

tion represents a weighted sum of the Green‘s functions associated with all the

grid points that contribute to I. The next operation in the sequence (Fig. 10c)

is a multiplication by the background error covariance matrix B which acts to
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Figure 10: A schematic representation of the outcome of each operation represented by equa-

tions (8) or (9) for the case of an idealized shear flow which is indicated by the arrows. The

metric I used is defined by all the grid points that lie along the black line in (a) that is

orthogonal to the jet axis. The operation considered in each case is highlighted in red in the

accompanying equation. In (e), the ground track of an idealized satellite pass (black dashed

line) and some associated observations (red crosses) is shown, as well as the site of an isolated

in situ observation.

spread information in space in a way that is consistent with the correlation

lengths associated with the prior uncertainties. As illustrated in Fig. 10c, this

operation has the effect of smoothing the Green‘s functions. It is followed by

the operation of H; the tangent linear model sampled at the observations. In

the example considered here, the smoothed Green‘s functions are subsequently

advected downstream and deformed by the shear flow (Fig. 10d). The result-

ing tangent linear fields are then sampled at the observation points (Fig. 10e)

where, for simplicity, we show the ground track of an idealized satellite pass

and an isolated in situ observation. Finally, the tangent linear fields at the

observation points are multiplied by the inverse stabilized representer matrix

(HBHT +R)−1 (Fig. 10f), an operation that effectively removes the total prior

covariances between the observation points. The product of each resulting ele-

ment of the solution in Fig. 10f with the corresponding innovation will yield the

contribution of each observation in Fig. 10e to ∆I (i.e., the impact on I).
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Figure 11: The spatial distributions of log10 RMS for SSH (a-c) and SST (d-f) resulting from

the operations indicated by the accompanying equations, averaged over all 4D-Var cycles

(2014-2017). The target section of the 200 m isobath for each metric is shown for reference

crossing the Pioneer glider array (red box).

7.2. MAB Analyses

The different steps of the observation impact calculations illustrated schemat-

ically in Fig. 10 as applied to the MAB cross-shelf transport metric Iu are shown

in Fig. 11 to elucidate which steps in the procedure are predominantly responsi-

ble for the robust patterns of SST and SSH impact that are apparent in Fig. 9.

Specifically, the RMS result of the different stages of the observation impact

procedure associated with observations of SSH and SST are shown in Fig. 11

averaged over all 4D-Var cycles spanning the full period 2014-2017. Fig. 11a

shows the RMS of the derivative (6) for Iu with respect to SSH, the weighted

sum of Green‘s functions associated with all of the model grid points (in space

and time) that contribute to Iu (analogous to Fig. 10b). The largest values

are located in the immediate vicinity of the target section, although there are

significant upstream influences associated with advection by the equatorward

shelf-break jet. There are also localized high values inshore of the target section
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that are most likely associated with wave propagation. Although significantly

lower in amplitude, the RMS of the Green‘s functions also reveal deep water im-

pacts of SSH observations. The RMS SST component of (6) for Iu is illustrated

in Fig. 11d and, like SSH, exhibits both local and remote influences of SST on

the target section volume transport. In addition to the upstream influences of

the shelf-break jet, weak influences of SST in the vicinity of the open boundaries

are also evident.

The influence of smoothing by B and the propagation of the smoothed

Green‘s functions forward in time by the tangent linear model (analogous to

Fig. 10d) is illustrated in Figs. 11b and 11e for the SSH and SST components.

To illustrate first the propagation of information in the full state-space of the

model, Figs. 11b and 11e show the result of operating with M rather than H

(i.e the tangent linear model solution before it is sampled at the observation

locations). For SSH, Fig. 11b shows that much of the signal present in Fig. 11a

is advected or propagated away from the target region, or dissipated, with some

of the largest values along the New Jersey coast. In the case of the SST com-

ponent, Fig 11e indicates that much of the impact remains close to the target

section, although upstream and downstream influences of the shelf-break jet are

apparent also.

Figures 11c and 11f show the result of sampling the tangent linear model

solution at the observation points and removing the total prior covariance be-

tween the observation locations (cf Figs. 10e and10f). Only at this stage of the

observation impact calculations do we begin to see the emergence of the robust

geographic patterns in the RMS impact fields that are so evident in Fig. 9. This

indicates that some or all of this structure is associated with the inverse stabi-

lized representer matrix. Recall though that according to (8) the impact of each

observation on Iu is given by the product of the innovation of each observation

with the corresponding elements of Figs. 11c and 11f in the case of SSH and

SST. With this in mind, Fig. 12 shows the RMS of the SST and SSH elements of

the innovation vector d, and the RMS of (HBHT + R)−1d associated with the

SST and SSH observations. A comparison of Figs. 12a and 12b with Figs. 9a
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Figure 12: The RMS innovations d for (a) SSH and (b) SST averaged over all 4D-Var cycles

(2014-2017). Also shown is log10 of the RMS of the product of the inverse stabilized representer

matrix and the innovations for (c) SSH and (d) SST. The target section of the 200 m isobath

for each metric is shown for reference crossing the Pioneer glider array (green box).

and 9d confirms that some of the regions of elevated impact are associated with

large innovations in SST (such as those associated with the shelf-break and Gulf

Stream fronts) and SSH (such as the Gulf Stream), in agreement with Fig. 8.

However, Fig. 12c indicates that over the continental shelf (HBHT + R)−1

accounts for much of the structure of the impact of SSH that is apparent in

Fig. 9. On the other hand, for SST, Fig. 12d shows that (HBHT + R)−1 gen-

erally down-weights the innovations in the frontal regions. The emergence of

additional structure in Fig. 11f is associated with HBMT (∂I/∂x)|xb , indicating

that the impact structure for SST in Fig. 9 is also significantly controlled by

the underlying circulation. Similar analyses to those presented in Fig. 12 for
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the case of IuT and IuS (not shown) support these conclusions.

8. Observation Sensitivity and Borrowing Strength

The observation impact calculations of section 6 quantify the contribution

of each observation to the metric increments resulting from data assimilation.

However, these impacts do not necessarily indicate how the metrics themselves

will change if particular observations are excluded from the 4D-Var analysis

cycles. This information is provided by a complementary calculation which

quantifies the sensitivity of a metric I to changes in the observation values or

observing array (Moore et al., 2011c). In this case, the analysis equation (1) is

expressed in a more general form as:

xa = xb +K(d) (10)

where K(d) represents the entire data assimilation algorithm as a function of

the innovation vector d = yo −H(xb). To first-order, a change δyo in the ob-

servations will lead to a change in the analysis δxa = (∂K/∂yo)|xbδyo where

(∂K/∂yo)|xb represents the tangent linearization of the entire 4D-Var data as-

similation system about the background xb. At the end of the 1st outer-loop,

the resulting change in any circulation metric to first-order is then given by:

δIL ' δyoT (∂K/∂yo)|Txb
ie∑

i=is

MT
i hi (11)

δIQ ' δyoT (∂K/∂yo)|Txb
ie∑

i=is

MT
i (Ei + ET

i )xb
i (12)

for the general linear and quadratic classes of metric considered in section 6.

In (11) and (12), (∂K/∂yo)|Txb represents the adjoint of the entire 4D-Var data

assimilation system.

As shown by Moore et al. (2011b), choosing δyo equal to −1 times the

innovations associated with a particular subset of observations allows us to

estimate the change that will occur in a metric if those observations are excluded

from the 4D-Var analysis calculation. In particular, the change that occurs
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Figure 13: Histograms of the RMS change in each metric averaged over all 2017 4D-Var cycles

when observations of different types and from different remote sensing platforms are excluded

from the 4D-Var analyses, for (a,d) δIu, (b,e) δIuT and (c,f) δIuS .

in IL or IQ due to eliminating any subset of observations from any 4D-Var

cycle can be computed from a single integration of the adjoint of the 4D-Var

algorithm. Figure 13 shows the RMS change in Iu, IuT , and IuS that results

from independently eliminating all of the observations of the type indicated from

all of the 4D-Var analysis cycles during 2017. Since the computational cost of

the adjoint of the 4D-Var system is comparable to that of 4D-Var itself, we have

limited these calculations to this single year when data coverage is good for all

platforms. A histogram of the RMS impacts for 2017 alone (not shown) is very

similar to Fig. 6 except that very few Jason-2 altimeter observations were used

during 2017. This was due to Jason-2 having been superseded by the Jason-3

tandem mission, and our decision not to use data from the Jason-2 geodetic

mission that began in July 2017 out of concern that the data errors might be

increased by possible inaccuracies in the MSS and MDT off the reference mission

ground-tracks. (We have subsequently regained confidence in these data and

restored Jason-2 to the data flow for the MARACOOS model.)
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A comparison of Fig. 13 with the RMS impacts of Fig. 6 reveals several

noteworthy differences between the conclusions drawn from the impact calcu-

lations and the supporting sensitivity calculations. First, while the observation

impact calculations of Fig. 6 indicate that both in situ temperature and salinity

observations have the largest impact on the three transport metrics, and con-

tribute approximately equally to the metric increments, Fig. 13 reveals that the

elimination of all the in situ temperature observations from each analysis cycle

yields the largest change in each metric. Second, while Fig. 6 shows that in situ

velocity observations and HF radar observations have a relatively low impact

on each metric, Fig. 13 indicates that elimination of these data from each 4D-

Var cycle leads to a relatively large change in all metrics, comparable in fact

to eliminating both SST and SSH. Third, Fig. 13 shows that excluding satellite

SSH and SST observations leads to smaller changes in the metric increments

than might be anticipated from the impact calculations of Fig. 6.

Figure 14: The spatial distribution of the log10 of the RMS change that results in each index

when observations falling within each model are eliminated from all 2017 4D-Var analyses.

Specifically for altimeter observations and (a) δIu , (b) δIuT and (c) δIuS , and satellite SST

observations for (d) δIu, (e) δIuT and (f) δIuS . In each case the RMS is shown at the end

of the 1st outer-loop. The location of the 200 m isobath target section crossing the Pioneer

glider array (green box) is indicated.
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The sensitivity of the metric increments to exclusion of SST and SSH ob-

servations is further explored in Fig. 14, which shows the RMS change in each

metric when all observations that fall within a given grid cell are eliminated

from the 2017 4D-Var cycles. Fig. 14 shows that exclusion of observations near

the target section generally yields the largest change in each metric. For SSH,

this is in stark contrast to Fig. 9, which indicates that it is typically SSH ob-

servations remote from the target section that have the most significant impact

on each metric. For SST, Fig. 9 indicates that while observations in the vicinity

of the target section have an impact, there are significant impacts from remote

observations as well, in contrast to Fig. 14.

We hypothesize that the seemingly contradictory nature of the observation

impact and observation sensitivity calculations can be understood in terms of

the concept of borrowing strength that arises in the field of statistics. The

idea of borrowing strength was first introduced in the 1960s and 70s by the

mathematician John Tukey at Princeton University in connection with election

night analysis and forecasting of U.S. Congressional seats (see Brillinger, 2002),

and, since then, has enjoyed tremendous popularity in the fields of empirical

Bayesian methods and shrinkage estimation for ill-posed problems. The idea is

valid in the current context since 4D-Var represents a form of penalized least-

squares in which the ill-posed nature of the ocean state estimation problem

is regularized using the background error covariance information in B (e.g.,

see Bennett, 2002). The basic idea behind borrowing strength is that while

some observations, such as those from HF radars, do not have a significant

direct influence on a chosen metric I as quantified by the observation impact

calculations, they can nonetheless provide information about the ocean state

which corroborates that obtained by other observing platforms, thus enhancing

the utility of the latter. In this way, the HF radar observations can have a sizable

indirect influence on I if they are subsequently excluded from the analysis,

since the corroborating information that they provide about the ocean state in

support of other observing platforms is lost.

To illustrate this idea further, Table 4 shows the ratio of the RMS sensitiv-
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ity per datum to the RMS impact per datum for all three metrics. This ratio

is a measure of the average change that actually occurs in each metric when

an observation is excluded from all 4D-Var analysis and that which might be

expected to occur based on the observation impact alone. Thus, a ratio of one

indicates that the sensitivity and impact calculations predict, on average, the

same change in a given metric if an observation is excluded from each 4D-Var

cycle. On the other hand, a ratio greater than one indicates that the actual

change in an index will be larger than expected based on the observation im-

pact calculations. Thus the departure of the ratios in Table 4 from a value of

one can be viewed as an indicator of the level of borrowing strength. Inspection

of Table 4 reveals that, in fact, all observation platforms appear to be borrowing

strength from each other to a different degree. The observations that appear

to lend most support to the other elements of the observing system are mea-

surements of surface currents by HF radar observations. Conversely, altimetry

measurements do not appear to add much additional support to the observing

system than is suggested by the observation impact analyses. Since ratios in

Table 4 for all observation platforms are greater than one, this indicates that

the observing array is stronger in its entirety than the consideration of each

platform separately would suggest (i.e. each observation platform benefits from

the collective presence of all other platforms).

Returning to the HF radar and velocity observations, Fig. 6 shows that these

data have relatively little direct impact on the increments in the three transport

metrics. However, they do in fact contribute useful guidance to the 4D-Var anal-

yses that corroborates information from other platforms as evidenced in Fig. 13.

In fact, Table 4 shows that these data are an order of magnitude more impact-

ful than the observation impact analyses suggest. It is useful to speculate in

what ways data from other observing platforms can borrow strength from the

HF radar and in situ velocity observations. For example, the surface current

estimates from HF radar observations comprise contributions from the wind-

driven Ekman and pressure-driven flows. Satellite altimeter observations, on

the other hand, can only detect the signature of the pressure-driven flow, in-
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Iu IuT IuS

SST 4.9 6.0 5.9

SSH (all) 1.6 1.4 1.3

in situ T 3.3 3.0 3.3

in situ S 3.2 3.2 4.0

in situ u,v 6.7 5.4 6.7

HF radar 10.4 9.4 10.4

Table 4: The ratio of RMS sensitivity per datum to the RMS impact per datum for each

transport metric during 2017. This ratio is a measure of the average change that actually

occurs in each metric when an observation is excluded from the 4D-Var analysis and that

which might be expected to occur based on the observation impact alone. The repeated

assimilation of SSH observations described in section 4.1 has been accounted for here.

formation that will be corroborated by the HF radar data. Furthermore, much

of the energy in the circulation will be in the form of potential energy (except

at the smallest scales), and, as such, the temperature and salinity observations

that provide direct information about the density field will generally be more

effective at recovering the circulation than velocity observations. Nonetheless,

the velocity observations will contain the, albeit small, kinetic energy signatures

associated with coherent circulation features that are resolved by remote sensing

and hydrographic observations, and the velocity observations will corroborate

the information from the latter observing platforms. Thus, in this way, remote

sensing and in situ instruments can be said to be borrowing strength from the

velocity observations. Consequently, if the HF radar and other velocity observa-

tions are excluded from the 4D-Var analysis, the corroborating information that

they provide will be lost, and the observation sensitivity calculations indicate

that this can have a far greater impact on the analyses than observation impact

calculations alone suggest.

Similarly, the differences between the spatial distributions of the SST and

SSH impacts in Fig. 9 and the corresponding sensitivities of Fig. 14 can also be

interpreted in terms of borrowing strength. The high sensitivity of the cross-
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shelf transport metrics to observations in the vicinity of the target regions in

Fig. 14 indicates that the in situ observations from the Pioneer array are ben-

efiting (i.e., borrowing strength) from the corroborating information provided

by satellite remote sensing data in this region. Therefore, while not shown here,

the Pioneer array in situ observations have the largest impact locally on the

cross-shelf metrics, and the loss of remote sensing observations from this region

will significantly impact each metric because the corroborating information the

remote sensing platforms provide to the in situ observations will be lost.

The observation impact and observation sensitivity calculations therefore

provide complementary information about the direct and indirect impact of each

observation on a chosen metric, and furnish direct evidence for the synergy that

exists within the 4D-Var system between observations from different platforms.

9. Summary and Conclusions

The impact of observations from in situ sensors and satellite and terrestrial

remote sensing platforms on cross-shelf transport in the vicinity of the MAB

front derived from 4D-Var estimates of the ocean state has been quantified using

a rigorous method that is currently employed in numerical weather prediction at

several operational centers. Despite being relatively small in number, the data

that have the largest impact are in situ measurements of temperature and salin-

ity since these provide direct information about the 3-dimensional structure of

the circulation. However, satellite remote sensing observations of SSH and SST

collectively also exert a significant influence on 4D-Var circulation estimates.

While the impact of an individual SST observation is relatively small compared

to that of an in situ datum (cf Table 3), the large volume of SST data yields

a sizeable aggregate impact. Along track altimetry observations, on the other

hand, are generally the least abundant data stream (cf Fig. 2), but the impact

per observation is more than an order of magnitude larger than that of SST.

Therefore, the aggregate impact of altimetry observations is on par with that

of SST. While the overall impact of HF radar observations appears to be quite
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modest, these data do, in fact, contribute important information from which

other data streams borrow strength as discussed below.

The impact information can be viewed as one quantitative measure of the

value of data from different components of the ocean observing systems. In

addition though, the observation impacts also provide useful diagnostics for

assessing the performance characteristics of the data assimilation system, and

yield a quantitative measure of the utility of observations from different observ-

ing platforms. This information can be used for tuning the data assimilation

system with the aim of extracting additional information from under-utilized

observing platforms.

The impact of an observation within the 4D-Var system will depend on

several factors that include the extent to which information is dynamically in-

terpolated in space and time by the background circulation (via the tangent

linear and adjoint models), and the covariance between the observation loca-

tions of errors and uncertainties in the background and the observations. The

geographic distributions of the impacts were found to be remarkably robust

across several metrics, across different platforms, and through time.

From an observing system design perspective, these patterns could be taken

as guidance on regions where acquiring sustained observations will contribute

the most information toward constraining cross-shelf exchange estimates, noting

that these regions are not always local. However, it must be emphasized that

all the specifics of the results presented here are for the particular flow indices,

Iu, IuT and IuS , that we defined and the geographic section at which they

are evaluated. Extension to other dynamic or application-specific indices, and

locations, is readily pursued by defining new metrics following (3) - (5), deriving

(∂I/∂x)|xb , and applying the methodology outlined above.

A step-by-step analysis of the observation impact procedure revealed that

the robust geographic distributions of impact are the result of the combined

influence of the space-time dynamic interpolation of 4D-Var and the prior error

covariance information. Therefore, unravelling the flow of information through

the data assimilation system is not straightforward. Clearly though the space-
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time dynamic interpolation relies on familiar dynamical processes such as ad-

vection by ocean currents and wave propagation, and it is useful to think of the

information horizons associated with these processes along the lines discussed

by Moore et al. (2015). The primary circulation features that control the ex-

tent of the advection information horizons are the shelf-break jet (∼ 0.1m s−1)

and the Gulf Stream (∼ 2m s−1). Over a 3-day assimilation cycle, informa-

tion can therefore be advected ∼ 25 km(∼ 0.3◦) by the the shelf-break jet and

∼ 500 km(∼ 6◦) by the Gulf Stream. The information horizons associated

with wave propagation will depend on the propagation speed of baroclinic and

barotropic waves. The fastest internal waves will travel at the first baroclinic

mode phase speed, which in this region is ∼ 2 m s−1 (Chelton et al., 1998).

Therefore the extent of the baroclinic wave information horizon will be similar

to that due to advection by the Gulf Stream. The very rapid phase speed of the

barotropic mode ensures that its information horizon will encompass the entire

model domain. With these factors in mind, the geographic patterns of impact

evident in Fig. 9 are perfectly plausible based on the dynamic propagation of

information alone.

As noted by Trémolet (2008), the impact of observations at any stage of

the 4D-Var calculation can be quantified by archiving appropriate information

from the data assimilation system. For the ROMS 4D-Var platform this idea

raises some interesting possibilities since, in principle, the contribution of each

term in the governing equations to the observation impact calculations can be

quantified. Therefore, a future study aimed at quantifying the role of advection,

diffusion, pressure gradient effects, etc, on the flow of information through the

4D-Var system is envisaged.

The synergy between observations from different platforms was identified in

the present study by comparing the outcome of the observation impacts calcula-

tions with the outcome of observation sensitivity calculations. This comparison

uncovers the extent to which observations from different platforms are able to

borrow strength from each other. In this way, observations from seemingly low

impact platforms, such as HF radar surface current estimates, can provide in-
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formation about the state of the ocean which corroborates that available from

other platforms, such as satellite systems. This inherent behavior of data assim-

ilation systems behooves us to pay close attention to the utility and attributes

of all observing platforms, since the elimination of a seemingly low impact data

stream could significantly degrade the performance of an analysis-forecast sys-

tem. These types of analyses also pave the way for optimizing the design of

observing systems.
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